The physical synthesis process of zinc selenide mainly includes the following technical routes and detailed parameters

News

The physical synthesis process of zinc selenide mainly includes the following technical routes and detailed parameters

1. Solvothermal synthesis

1. Raw material ratio
Zinc powder and selenium powder are mixed at a 1:1 molar ratio, and deionized water or ethylene glycol is added as the solvent medium 35.

2 . Reaction conditions

o Reaction temperature: 180-220°C

o Reaction time: 12-24 hours

o Pressure: Maintain the self-generated pressure in the closed reaction kettle
The direct combination of zinc and selenium is facilitated by heating to generate nanoscale zinc selenide crystals 35.

3. Post-treatment process
After the reaction, it was centrifuged, washed with dilute ammonia (80 °C), methanol, and vacuum dried (120 °C, P₂O₅). btain a powder > 99.9% purity 13.


2. Chemical vapor deposition method

1. Raw material pretreatment

o The purity of the zinc raw material is ≥ 99.99% and placed in a graphite crucible

o Hydrogen selenide gas is transported by argon gas carry6.

2 . Temperature control

o Zinc evaporation zone: 850-900°C

o Deposition zone: 450-500°C
Directional deposition of zinc vapor and hydrogen selenide by temperature gradient 6.

3 . Gas parameters

o Argon flow: 5-10 L/min

o Partial pressure of hydrogen selenide:0.1-0.3 atm
Deposition rates can reach 0.5-1.2 mm/h, resulting in the formation of 60-100 mm thick polycrystalline zinc selenide 6.


3. Solid-phase direct synthesis method

1. Raw material handling
The zinc chloride solution was reacted with the oxalic acid solution to form a zinc oxalate precipitate, which was dried and ground and mixed with selenium powder at a ratio of 1:1.05 molar 4.

2 . Thermal reaction parameters

o Vacuum tube furnace temperature: 600-650°C

o Keep warm time: 4-6 hours
Zinc selenide powder with a particle size of 2-10 μm is generated by solid-phase diffusion reaction 4.


Comparison of key processes

method

Product topography

Particle size/thickness

Crystallinity

Fields of application

Solvothermal method 35

Nanoballs/rods

20-100 nm

Cubic sphalerite

Optoelectronic devices

Vapor deposition 6

Polycrystalline blocks

60-100 mm

Hexagonal structure

Infrared optics

Solid-phase method 4

Micron-sized powders

2-10 μm

Cubic phase

Infrared material precursors

Key points of special process control: the solvothermal method needs to add surfactants such as oleic acid to regulate the morphology 5, and the vapor deposition requires the substrate roughness to be < Ra20 to ensure the uniformity of deposition 6.

 

 

 

 

 

1. Physical vapor deposition (PVD).

1 . Technology Path

o Zinc selenide raw material is vaporized in a vacuum environment and deposited onto the substrate surface using sputtering or thermal evaporation technology12.

o The evaporation sources of zinc and selenium are heated to different temperature gradients (zinc evaporation zone: 800–850 °C, selenium evaporation zone: 450–500 °C), and the stoichiometric ratio is controlled by controlling the evaporation rate12。

2 . Parameter control

o Vacuum: ≤1×10⁻³ Pa

o Basal temperature: 200–400°C

o Deposition rate:0.2–1.0 nm/s
Zinc selenide films with a thickness of 50–500 nm can be prepared for use in infrared optics 25.


2. Mechanical ball milling method

1. Raw material handling

o Zinc powder (purity≥99.9%) is mixed with selenium powder at a 1:1 molar ratio and loaded into a stainless steel ball mill jar 23.

2 . Process parameters

o Ball grinding time: 10–20 hours

Speed : 300–500 rpm

o Pellet ratio: 10:1 (zirconia grinding balls).
Zinc selenide nanoparticles with a particle size of 50–200 nm were generated by mechanical alloying reactions, with a purity of >99% 23.


3. Hot pressing sintering method

1 . Precursor preparation

o Zinc selenide nanopowder (particle size < 100 nm) synthesized by solvothermal method as raw material 4.

2 . Sintering parameters

o Temperature: 800–1000°C

o Pressure: 30–50 MPa

o Keep warm: 2–4 hours
The product has a density of > 98% and can be processed into large-format optical components such as infrared windows or lenses 45.


4. Molecular beam epitaxy (MBE).

1. Ultra-high vacuum environment

o Vacuum: ≤1×10⁻⁷ Pa

o The zinc and selenium molecular beams precisely control the flow through the electron beam evaporation source6.

2. Growth parameters

o Base temperature: 300–500°C (GaAs or sapphire substrates are commonly used).

o Growth rate:0.1–0.5 nm/s
Single-crystal zinc selenide thin films can be prepared in the thickness range of 0.1–5 μm for high-precision optoelectronic devices56.

 


Post time: Apr-23-2025